Model and proof theory of constructive ALC
Autoren
Mehr zum Buch
Beschreibungslogiken (BLen) stellen einen vieluntersuchten logischen Formalismus dar, der den Bereich der Wissensrepräsentation und das Semantic Web signifikant geprägt hat. Allerdings basieren BLen meist auf einer klassischen deskriptiven Semantik, die gekennzeichnet ist durch einen idealisierten Wahrheitsbegriff nach Platons Ideenlehre, weshalb diese unzureichend ausdrucksstark sind, um in Entwicklung befindliches und unvollständiges Wissen zu repräsentieren, wie es beispielsweise durch Datenströme oder fortlaufende Prozesse generiert wird. Derartiges partiell festgelegtes und unvollständiges Wissen lässt sich auf der Basis einer konstruktiven Semantik ausdrücken. Diese Arbeit untersucht die Model- und Beweistheorie einer konstruktiven Variante der Basis-BL ALC, die im Folgenden als cALC bezeichnet wird. Die Semantik dieser konstruktiven Beschreibungslogik resultiert daraus, die traditionelle zweiwertige Interpretation logischer Aussagen des Systems ALC durch einen konstruktiven Wahrheitsbegriff zu ersetzen. Eine derartige Interpretation ist die Voraussetzung dafür, um einerseits Anwendungen mit partiellem Wissen angemessen zu repräsentieren, und sowohl die Konsistenz logischer Aussagen unter Abstraktion als auch ihre Robustheit unter Verfeinerung zu gewährleisten, und andererseits um den Grundstein für eine Beschreibungslogik-basierte Typentheorie gemäß dem Curry-Howard Isomorphismus zu legen. Die Ergebnisse der Untersuchung der Beweistheorie von cALC umfassen eine vollständige und korrekte Hilbert Axiomatisierung, einen Gentzen Sequenzenkalkül, und ein semantisches Tableaukalkül, sowie Beweise zur endlichen Modelleigenschaft und Entscheidbarkeit. Darüber hinaus kann cALC zu normaler intuitionistischer Modallogik und klassischem ALC durch vollständige und korrekte Erweiterungen ausgebaut werden, und bildet damit einen Startpunkt für die systematische Untersuchung einer konstruktiven Korrespondenztheorie.