Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme
Autoren
Mehr zum Buch
Die vorliegende Arbeit beschreibt ein generisches Verfahren zur wahrscheinlichkeitsbasierten Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fahrsituationen und Manöver unterliegen einer gewissen Unsicherheit basierend auf der unterschiedlichen Situationswahrnehmung bzw. Manöverdurchführung der Fahrzeugführer. Diese Unsicherheitskomponente wird in den Ansatz zur Situations- und Manövererkennung mit einbezogen. Ein weiterer Unsicherheitsaspekt beruht auf den ungenauen Umgebungsinformationen auf denen die Situations- und Manövererkennung basiert. Beide Unsicherheitsursachen sind völlig unabhängig voneinander und werden aus diesem Grund separat betrachtet und modelliert. Zur Modellierung dieser beiden Unsicherheitsaspekte bedient sich der vorgestellte Ansatz der Fuzzy-Theorie, der Theorie der probabilistischen Netzen sowie Verfahren zur Fehlerfortpflanzung und Sensitivitätsanalyse. Nach der theoretischen Vorstellung dieser Methodiken wird in der Arbeit detailliert auf den Einsatz und das Zusammenspiel der einzelnen Verfahren zur Erkennung der Fahrsituationen und Fahrmanöver eingegangen. Die Umsetzbarkeit des vorgestellten Verfahrens wird am Beispiel der Notbremssituation gezeigt. Die Notbremssituation setzt sich aus unterschiedlichen Teilsituationen und Manövern zusammen. Die Erkennung der einzelnen Situationen und Manöver sowie die Zusammenführung zur übergeordneten Notbremssituation wurden mit Hilfe des vorgestellten Verfahrens realisiert. Zur Evaluierung der Erkennungsgüte wurden sowohl Messdaten aus dem Straßenverkehr als auch realitätsnahe Daten, aufgezeichnet auf Versuchsstrecken, herangezogen.