Gratisversand in ganz Deutschland!
Bookbot

Hans Triebel

    7. Februar 1936
    Theory of function spaces 3
    Höhere Analysis
    Analysis und mathematische Physik
    Anmerkungen zur Mathematik
    Theory of function spaces 1
    Interpolation theory, function spaces, differential operators
    • 1981

      InhaltsverzeichnisZahlen und Räume.Konvergenz und Stetigkeit.Differential- und Integralrechnung im R 1 (Grundbegriffe).Gewöhnliche Differentialgleichungen (Existenz- und Unitätssätze).Elementare Funktionen und Potenzreihen.Banachräume.Integralrechnung im R 1 (Fortsetzung).Differentialrechnung im R n.Integralrechnung im R n.Gewöhnliche Differentialgleichungen (Lösungsmethoden).Variationsrechnung.Prinzipien der klassischen Mechanik.Maßtheorie.Integrationstheorie.Funktionentheorie.Prinzipien der Hydrodynamik ebener Strömungen.Elemente der Geometrie.Orthogonalreihen.Partielle Differentialgleichungen.Operatoren in Banachräumen.Operatoren in Hilberträumen.Distributionen.Partielle Differentialgleichungen und Distributionen.Grundbegriffe der klassischen Feldtheorie.Prinzipien der speziellen Relativitätstheorie und der Elektrodynamik.Selbstadjungierte Operatoren im Hilbertraum.Differentialoperatoren und orthogonale Funktionen.Prinzipien der Quantenmechanik.Geometrie auf Mannigfaltigkeiten I (Tensoren).Allgemeine Relativitätstheorie I (Grundgleichungen).Allgemeine Relativitätstheorie II (Singularitäten, schwarze Löcher, Kosmologie).Geometrie auf Mannigfaltigkeiten II (Formen).Die Wellengleichung in gekrümmten Raum-Zeiten.Singularitätentheorie.Katastrophen: Theorie und Anwendung.

      Analysis und mathematische Physik
    • 1980

      Mathematikstudierende höherer Semester führt dieses Lehrbuch in die Funktionalanalysis und Operatorenrechnung ein.

      Höhere Analysis