Performance and constraint satisfaction in robust economic model predictive control
Autoren
Mehr zum Buch
In this thesis, we develop a novel framework for model predictive control (MPC) which combines the concepts of robust MPC and economic MPC. The goal of this thesis is to develop and analyze MPC schemes for nonlinear discrete-time systems which explicitly consider the influence of disturbances on arbitrary performance criteria. Instead of regarding the two aspects separately, we propose robust economic MPC approaches that integrate information which is available about the disturbance directly into the economic framework. In more detail, we develop three concepts which differ in which information about the disturbance is used and how this information is taken into account. Furthermore, we provide a thorough theoretical analysis for each of the three approaches. To this end, we present results on the asymptotic average performance as well as on optimal operating regimes. Optimal operating regimes are closely related to the notion of dissipativity, which is therefore analyzed for the presented concepts. Under suitable assumptions, results on necessity and sufficiency of dissipativity for optimal steady-state operation are established for all three robust economic MPC concepts. A detailed discussion is provided which compares the different performance statements derived for the approaches as well as the respective notions of dissipativity.