Investigation of non-contact bearing systems based on ultrasonic levitation
Autoren
Mehr zum Buch
Non-contact bearings based on acoustic/ultrasonic levitation are investigated in this thesis. Both standing wave type and squeeze film type ultrasonic levitation are investigated theoretically and experimentally. A new configuration of standing wave levitation is presented which is able to levitate large planar object at a position of multiple times of a half wavelength of the sound wave. The theoretical model for the proposed levitation system is established and a prototype system is constructed accordingly. A CD is successfully levitated with the proposed system at a height of half a wavelength. Squeeze film type ultrasonic levitation is investigated theoretically to find the crucial design parameters and to improve the levitation capacity. Two analytical models based on acoustic theory and fluid dynamics are presented and compared. The governing fluid dynamics equation is solved numerically to obtain precise pressure distributions. Based on the theoretical investigation, a novel non-contact journal bearing is developed for suspension of a solid steel spindle with diameter of 50 mm. Im Rahmen dieser Arbeit werden berührungslose Lagerungen mit akustischer Ultraschall-Levitation entwickelt und vorgestellt. Dabei werden sowohl Stehwellen-, als auch Squeezefilmlevitation theoretisch und experimentell untersucht. In dieser Arbeit wird ein neuer Aufbau vorgestellt, mit dem große ebene Objekte im Abstand einiger halber Wellenlängen levitiert werden können. Neben theoretischen Betrachtungen wird ein Prototyp aufgebaut, an dem bei einem Abstand einer halben Wellenlänge eine Levitationskraft von 1N gemessen werden kann. Damit kann erfolgreich eine CD levitiert werden. Zur Auslegung und Optimierung der Squeezefilmlevitation werden zwei analytische Modelle, die einerseits auf der Akustik und anderseits auf der Fluiddynamik beruhen, vorgestellt und verglichen. Das akustische und das numerisch ausgewertete fluiddynamische Modell werden anschließend mit Hilfe von Messungen validiert. Basierend auf den Simulationen wird ein neuartiges berührungsloses Lager für eine Welle mit einem Durchmesser von 50 mm entworfen.
Parameter
- ISBN
- 9783941416703