Das Buch ist derzeit nicht auf Lager
Towards Optimally Diverse Randomized Ensembles of Neural Networks
Autoren
136 Seiten
Mehr zum Buch
Focusing on ensemble learning, this work highlights the effectiveness of combining diverse neural network classifiers to achieve improved accuracy over single models. It examines how randomizing neural network parameters can create diverse ensembles, enhancing generalization. By employing a sampling strategy akin to Random Forests, the study aims to foster disagreement among network members. Experimental findings reveal that while inducing diversity in ensembles can be beneficial, it does not always guarantee accuracy improvements, making this research valuable for enthusiasts of ensemble methods and neural networks.
Parameter
- ISBN
- 9783330344518
Kategorien
Buchvariante
2017, paperback
Buchkauf
Wir benachrichtigen dich per E-Mail.