Regular solids and isolated singularities
Autoren
Mehr zum Buch
InhaltsverzeichnisI: Regular Solids and Finite Rotation Groups.§1. The Platonic Solids.§2. Convex Polytopes.§3. Regular Solids.§4. Enumeration and Realization of Regular Solids.§5. The Rotation Groups of the Platonic Solids.§6. Finite Subgroups of the Rotation Group SO(3).§7. Normal Subgroups.§8. Generators and Relations for the Finite Subgroups of SO(3).II: Finite Subgroups of SL(2, G) and Invariant Polynomials.§1. Finite Subgroups of SL(2, C).§2. Quaternions and Rotations.§3. Four-Dimensional Regular Solids.§4. The Orbit Spaces S3/G of the Finite Subgroups G of SU(2).§5. Generators and Relations for the Finite Subgroups of SL(2, C).§6. Invariant Divisors and Semi-Invariant Forms.§7. The Characters of the Invariant Divisors.§8. Generators and Relations for the Algebra of Invariant Polynomials.§9. The Affine Orbit Variety.III: Local Theory of Several Complex Variables.§1. Germs of Holomorphic Functions.§2. Germs of Analytic Sets.§3. Germs of Holomorphic Maps.§4. The Embedding Dimension.§5. The Preparation Theorem.§6. Finite Maps.§7. Finite and Strict Maps.§8. The Nullstellensatz.§9. The Dimension.§10. Annihilators.§11. Regular Sequences.§12. Complete Intersections.§13. Complex Spaces.IV: Quotient Singularities and Their Resolutions.§1. Germs of Invariant Holomorphic Functions.§2. Complex Orbit Spaces.§3. Quotient Singularities.§4. Modifications. Line Bundles.§5. Cyclic Quotient Singularities.§6. The Resolution of Cyclic Quotient Singularities.§7. The Cotangent Action.§8. Line Bundles with Singularities.§9. The Resolution of Non-Cyclic Quotient Singularities.§10. Plumbed Surfaces.§11. Intersection Numbers.§12. The Homology of Plumbed Surfaces.§13. TheFundamental Group of a Plumbed Surface Minus its Core.§14. Groups Determined by a Weighted Tree.§15. Topological Invariants.V: The Hierarchy of Simple Singularities.§1. Basic Concepts.§2. The Milnor Number.§3. Transformation Groups.§4. Families of Germs.§5. Finitely Determined Germs.§6. Unfoldings.§7. The Multiplicity.§8. Weighted Homogeneous Polynomials.§9. The Classification of Holomorphic Germs.§10. Three Series of Holomorphic Germs.§11. Simple Singularities.§12. Adjacency.§13. Conclusion and Outlook.References.