Gratisversand in ganz Deutschland!
Bookbot

Deep Belief Nets

Diese Serie taucht in das faszinierende Reich der künstlichen Intelligenz ein und erforscht neuronale Netzwerke, die von der Struktur des menschlichen Gehirns inspiriert sind. Sie untersucht elegante Modelle, die abstrakte Konzepte aus einfacheren Bestandteilen lernen können, ähnlich der menschlichen Kognition. Leser entdecken die wesentlichen Bausteine dieser hochentwickelten Systeme, von grundlegenden Konzepten bis hin zu fortschrittlichen Techniken für Bild- und Zeitreihenverarbeitung. Das Werk bietet einen tiefen Einblick in die Prinzipien dieser leistungsstarken Lernalgorithmen.

Deep Belief Nets in C++ and CUDA C: Volume 1

Empfohlene Lesereihenfolge

  1. 1

    Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. What You Will Learn Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

    Deep Belief Nets in C++ and CUDA C: Volume 1