A study of the communist struggle for Greece between 1941 and 1949. The author based his research on interviews with participants, documentary sources and his own experience. He analyzes the characters, ideologies and events, demonstrating that the struggle unfolded in three rounds.
Nick Woodhouse Reihenfolge der Bücher





- 2018
- 2016
Spezielle Relativitätstheorie
- 201 Seiten
- 8 Lesestunden
Dieser Klassiker von Nicholas Woodhouse präsentiert die Spezielle Relativitätstheorie auf eine Art, die auf solider mathematischer Erfahrung aufbaut, aber weder einen umfangreichen Hintergrund in klassischer mathematischer Physik voraussetzt, noch einen langen Vorspann, der der Entwicklung neuer Werkzeuge, wie etwa der Tensor Analysis, gewidmet ist. Um die Relativitätstheorie verstehen zu können, muss ein klares geistiges Bild der Raumzeit entwickelt werden und nicht einfach eine Gewandtheit im Implementieren der Lorentz-Transformationen. Ein Leitmotiv des Buches besteht darin zu demonstrieren, dass Mathematik unseren Geist befreit, so dass wir die Welt, in der wir leben, über die Grenzen unserer physikalischen Intuition hinaus erkunden können. Die deutsche Übersetzung von Jürgen Kremer bewahrt den souveränen Stil des Autors.
- 2009
Introduction to Analytical Dynamics
- 240 Seiten
- 9 Lesestunden
This is a revised edition of a text on classical mechanics published twenty years ago. The presentation has been simplified, and feedback has been incorporated into the text, thus greatly improving the content and style, making it fresher and more compelling.
- 2006
General Relativity
- 222 Seiten
- 8 Lesestunden
Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.
- 2003
Special Relativity
- 100 Seiten
- 4 Lesestunden
These lectures were given to third-year mathematics undergraduates at Oxford in the late 1970s and early 1980s. The notes were produced originally in mimeographed form by the Mathematical Institute at Oxford in 1977, and in a revised edition in 1980. I have made further minor changes and corrections in this edition, and added some examples and exercises from problem sheets given out in lectures by Roger Penrose and Paul Tod. Special relativity provides one of the more interesting pedagogical challenges. This particular course was given to students with a strong mathematical background who already had a good grounding in classical mathematical physics, but who had not yet met relativity. The emphasis is on the use ofcoordinate-free and tensorial methods: I tried to avoid the traditional arguments based on the standard Lorentz transformation, and to encourage students to look at problems from a four-dimensional point of view. I did not attempt to 'derive' relativity from a minimal set of axioms, but instead concentrated on stating clearly the basic principles and assumptions. Elsewhere in the world, relativity is usually introduced in a more elementary way earlier in undergraduate courses, and even at Oxford, it is now part of the second-year syllabus in mathematics. I doubt, therefore, that anyone would contemplate giving a lecture course exactly along these lines. Nevertheless, I hope that the notes may provide one or two ideas. I have not attempted to produce a polished textbook. Inhaltsverzeichnis Space, Time and Maxwell s Equations.- Inertial Coordinates.- Vectors in Space-Time.- Relativistic Particles.- Tensors in Space-Time.- Electrodynamics.- Energy-Momentum Tensors.- Symmetries and Conservation Laws.