Gratisversand in ganz Deutschland!
Bookbot

Henri Poincaré

    29. April 1854 – 17. Juli 1912

    Ein französischer Denker, dessen weitreichendes Wissen Mathematik, Physik und Wissenschaftsphilosophie umfasste. Poincaré wurde oft als Universalgelehrter beschrieben, der auf allen Gebieten der Mathematik seiner Zeit herausragte. Seine Arbeit zeichnet sich durch ein tiefes Verständnis komplexer wissenschaftlicher Konzepte und deren philosophischer Implikationen aus. Er erforschte die Grenzen des menschlichen Wissens und die Natur der wissenschaftlichen Untersuchung.

    Henri Poincaré
    Der Wert der Wissenschaft
    Letzte Gedanken von Henri Poincaré
    Aus der reinen mathematik
    Aus Der Reinen Mathematik Und Mathematischen Physik
    Wissenschaft und Hypothese
    Sechs Vortrage Uber Ausgewahlte Gegenstande Aus Der Reinen Mathematik und Mathematischen Physik
    • 2022
    • 2022

      Aus der reinen mathematik

      Under der mathematischen physik

      • 56 Seiten
      • 2 Lesestunden

      Mathematische Vorlesungen an der Universita ̈t Go ̈ttingen: IV SECHS VORTRA ̈GE U ̈BER AUSGEWA ̈HLTE GEGENSTA ̈NDE AUS DER REINEN MATHEMATIK UND DER MATHEMATISCHEN PHYSIK auf Einladung der Wolfskehl-Kommission der Ko ̈niglichen Gesellschaft der Wissenschaften gehalten zu Go ̈ttingen vom 22.–28. April 1909 von HENRI POINCARE ́ Mitglied der Franzo ̈sischen Akademie Professor an der Facult ́e des Sciences der Universita ̈t Paris Mit 6 in den Text gedruckten Figuren

      Aus der reinen mathematik
    • 2022
    • 2020

      Science and method

      • 292 Seiten
      • 11 Lesestunden

      Valued by academicians and scholars, this book holds significant literary importance and serves as a vital knowledge resource for future generations. It is presented in its original print format, preserving its authentic character, including any marks or annotations from its initial publication. This approach ensures that the book's true nature and historical context remain intact for readers.

      Science and method
    • 2018
    • 2018

      This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

      Aus Der Reinen Mathematik Und Mathematischen Physik
    • 2017

      The Three-Body Problem and the Equations of Dynamics

      Poincaré’s Foundational Work on Dynamical Systems Theory

      • 270 Seiten
      • 10 Lesestunden

      Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating. 

      The Three-Body Problem and the Equations of Dynamics