
Parameter
Kategorien
Mehr zum Buch
Often, very complex controller techniques are applied to helicopters for generating an intuitively controllable and stable behavior of the aircraft. In legacy controllers, a number of iterations of system identification and loop shaping methods in frequency domain have to be conducted. In this book, a robust adaptive control theory is introduced, with the often underestimated fact of only limited available bandwidths in mind. To this end, the high-frequency adapting L1-adaptive controller is adjusted, a new adaptive law for output feedback is introduced, a new strategy for defining the design of a state feedback controller is proposed, and effects of uncertainties in the processor clock rate and of sensor noise are evaluated for taking the safety critical nature of the system into account. While legacy approaches can be automated by nonlinear optimization techniques and yet cannot eliminate the necessity of repeated flight tests, the L1-adaptive controller is particularly suitable to reduce development time, provided a sufficiently deep understanding of the system is available. Rigorous mathematical proofs substantiate the stability and robustness of the algorithms as shown, while performance and handling qualities are verified in a research simulator.
Buchkauf
Certifiable L1 adaptive control for helicopters, Magnus Bichlmeier
- Sprache
- Erscheinungsdatum
- 2016
Lieferung
Zahlungsmethoden
Feedback senden
- Titel
- Certifiable L1 adaptive control for helicopters
- Sprache
- Englisch
- Autor*innen
- Magnus Bichlmeier
- Verlag
- Cuvillier Verlag
- Erscheinungsdatum
- 2016
- ISBN10
- 3736992815
- ISBN13
- 9783736992818
- Kategorie
- Skripten & Universitätslehrbücher
- Beschreibung
- Often, very complex controller techniques are applied to helicopters for generating an intuitively controllable and stable behavior of the aircraft. In legacy controllers, a number of iterations of system identification and loop shaping methods in frequency domain have to be conducted. In this book, a robust adaptive control theory is introduced, with the often underestimated fact of only limited available bandwidths in mind. To this end, the high-frequency adapting L1-adaptive controller is adjusted, a new adaptive law for output feedback is introduced, a new strategy for defining the design of a state feedback controller is proposed, and effects of uncertainties in the processor clock rate and of sensor noise are evaluated for taking the safety critical nature of the system into account. While legacy approaches can be automated by nonlinear optimization techniques and yet cannot eliminate the necessity of repeated flight tests, the L1-adaptive controller is particularly suitable to reduce development time, provided a sufficiently deep understanding of the system is available. Rigorous mathematical proofs substantiate the stability and robustness of the algorithms as shown, while performance and handling qualities are verified in a research simulator.